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ABSTRACT 

 

ENGINEERING ANALYSIS OF CUSTOM FOOT ORTHOTICS 

 

SEPTEMBER 2008 

 

LIESELLE E. TRINIDAD, B.S., STATE UNIVERSITY OF NEW YORK AT 

BUFFALO 

 

M.S., UNIVERSITY OF MASSACHUSETTS AMHERST 

 

Directed by: Professor Sundar Krishnamurty 

 

 

This thesis presents an engineering approach to the modeling and analysis of 

custom foot orthotics.  Although orthotics are widely used and accepted as devices for 

the prevention of and recovery from injuries, the design process continues to be based 

on empirical means.  There have been many clinical studies investigating the various 

effects that the orthotics can have on the kinematics and kinetics of human locomotion.  

The results from these studies are not always consistent, primarily due to subject 

variability and experimental nature of the design.  Alternatively, a better understanding 

of the therapeutic effects of custom foot orthotics, as well as designing for optimal 

performance, can be achieved through simulation-based engineering modeling and 

analysis studies. Such an approach will pave the way to clarify some of the ambiguous 

findings found in the clinical studies-based literature.  Towards this goal, this research 

presents a methodical process for the replication of the orthotics’ complex three-

dimensional geometry and for the construction of finite element analysis models using 

estimated nonlinear material properties.  
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As part of this research, laser scanning techniques are used to capture the 

objects’ details and geometry through generation of point cloud surface images by 

taking multiple scans from all angles.  Material testing and Mooney-Rivlin equations 

were used to construct the hyperelastic nonlinear material properties. Using the mid-

stance phase of gait for loading conditions, the ANSYS finite element package was 

utilized to run analyses on three different load classifications and the corresponding 

maximum stresses and deflection results were generated.  

The results indicate that the simulated models can augment and validate the use 

of empirical tables for designing custom foot orthotics. They can also provide the basis 

for the optimal design thicknesses of custom foot orthotics based on an end-user’s 

weight and activities. From a practical perspective, they can also be useful in further 

exploring different orthotics, loading conditions, and material properties, as well as the 

effectiveness of orthotics for different foot and lower extremity deformities.   
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CHAPTER 1 

 ENGINEERING ANALYSIS OF A CUSTOM FOOT ORTHOTIC 

1.1. Introduction 

Biomechanical-based engineering design is where biomechanical knowledge is 

applied to design products through engineering packages, software and concepts.  It 

involves a multidisciplinary approach to the solution of problems focusing on 

improving people’s quality of life.  Biomechanics can be stated as the research and 

analysis of the mechanics of living organisms.  By applying the laws and concepts of 

mechanics and physics, biomechanical mechanisms and structures can be simulated and 

studied.  When applied to human performance, a greater understanding of safety and 

performance can be gained through engineering modeling, simulation, analysis and 

measurement.  Significant advancements in the understanding of kinematics and 

dynamics of human motion, as well as in the design and development of medical 

devices to enhance human performance can thus offer new paradigms for the holistic 

solutions to the challenges faced when quality of life is compromised.  On the basis of 

these considerations, this research aims to design and develop a rigorous engineering 

modeling and analysis procedure for a widely used performance enhancement device, 

namely the Custom Foot Orthotic (CFO). 

With over 50 CFO manufacturers and over half of North Americans in need of 

orthotic intervention, there is still little scientific evidence in the literature to support the 

effects of stress redistribution and positive results seen by patients throughout the years.   

Proper knowledge of how the forces are applied and the mechanics of the interaction 
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between the body and orthotic can facilitate the development of optimally designed 

orthotics.  Accordingly, this research intends to further our understanding of the effects 

that CFOs have on human movement and performance. 

People from varying communities use orthotics, from frail elders to athletes and 

everyone in between.  In the sports world many athletes use foot orthotics to allow them 

to continue to participate in their sports even after experiencing some injury or ailment.  

Many times an orthotic is used as not only an injury healing device, but also as an injury 

prevention device.  Orthotics are typically accepted as a method for resolving symptoms 

by altering the position of the foot, which in turn alters the lower extremities and one’s 

alignment all the way up the body.  These adjustments may also change the applied 

tissue stresses in the foot.  

              

 

Figure 1. View of rear foot with and without orthotic intervention 

(Drawing credit to: www.Podiatrychannel.com) 
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Despite the fact that engineering modeling and analysis through CAD 

representations and Finite Element Analysis (FEA) are common in many product 

designs, tools related to these practices have not yet been fully utilized in the design of 

custom prescription foot orthotic design.  In recent times, the use of FEA to gain insight 

into the effectiveness of other types of orthotics, as well as provide scientific data and 

guidelines on orthotic design, has increased tremendously.  Although these tools have 

been used in other orthotic design it has not yet been used in custom prescription foot 

orthotic design.  The combination of complicated geometry, layering of multiple 

nonlinear materials and computing limitations has made this type of orthotic difficult 

and time consuming to model.   With the computing advances and development of 

algorithms within FEA as of late, this has become a more attainable research task and is 

the purpose of this proposed research.   

This research stipulates that biomechanics research can be improved when 

clinical studies are coupled with rigorous engineering methodologies.  This research 

expands on the understanding of human movement and performance through modeling, 

simulation and analysis.  Accordingly, it is the goal of this research to apply FEA based 

engineering modeling and analysis to better understand the therapeutic effects of 

orthotics and to validate the FEA results through experimental studies. 

The specific steps applied in this research were to acquire specific geometry of 

custom foot orthotic, acquire specific properties of four materials that make up a custom 

foot orthotic, build an accurate finite element model of a custom foot orthotic using the 

specific geometry and material properties and the validation of model accuracy. 
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 These steps can be accomplished by 1) using the latest technological laser 

scanning device to scan a custom foot orthotic geometry; 2) creating a solid accurate 

geometry of a custom orthotic to be converted and loaded into ANSYS FEA software 

package; and finally, 3) mathematically modeling  the nonlinear stress-strain behaviors 

of the materials through repeated data measurements from lab studies. 
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CHAPTER 2 

 AN ENGINEERING STUDY OF CUSTOM FOOT ORTHOSIS 

2.1. Introduction 

This thesis is in the area of biomechanics-based design engineering, focusing on 

the design and development of optimized assistive and/or rehabilitation devices, 

specifically Custom Foot Orthoses (CFOs).  This will be achieved by building on the 

expert domain knowledge from the fields of engineering mechanics, design 

optimization, kinesiology and statistics. 

 Working in biomechanics-based design engineering allows for a unique 

opportunity for collaboration between the Mechanical Engineering and Kinesiology 

Departments.  This allows for an engineering perspective to be added to the 

biomechanics of gait and orthotics research previously done.  Previous and current work 

done by the UMASS Kinesiology Department relating to orthotics includes the orthotic 

intervention on lower extremity in healthy runners and the orthotic intervention in 

forefoot and rearfoot strike patterns (Stackhouse C.L. et al., 2004; MacLean C. et al., 

2006).  The additions will be accomplished by building on work done by Dr. Chris 

MacLean, and to work hand in hand with Ryan Chang, Pedorthist and PhD candidate in 

Kinesiology.   

2.2. Orthotics  

The formal definition of an orthotic is “a support, brace, or splint used to 

support, align, correct or prevent the function of moveable parts of the body.  Shoe 
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inserts are orthotics that are intended to correct an abnormal, or irregular walking 

pattern, by altering slightly the angles at which the foot strikes a walking or running 

surface.” (Medicinenet)  Orthotics work by accommodating irregular foot structures and 

correcting improper foot function.   

Although orthotics are accepted as an effective means of treating and preventing 

injuries, it may take months for results to be seen because the prescription process is 

primarily one of qualitative means.  In addition, patient compliance may be lower than 

desired due to a lack of scientific basis for the claim to positive results.   

 

2.2.1. History of Orthotics 

In the late 1700’s, when shoes were constructed without right/left specificity, 

i.e., both were made identically, innkeepers at the time recognized that a major 

complaint of worn out travelers was foot pain. This is when the first insoles were made 

by innkeepers from matted animal hair (later called felt).  Eventually, shoemakers began 

modifying the foot pads made by the innkeepers. They added leather materials to the 

insides of shoes thereby improving the fit, and thus giving birth to the first arch 

supports.  Early arch supports were made with layers of leather strips laminated 

together, molding them to shoe lasts (the solid form around which a shoe is molded), 

and then shaping an arch support inside the shoe by hand. Although these new arch 

supports introduced a new level of comfort, they were often heavy and bulky.  The 

bulkiness problem was later alleviated by incorporating lighter and softer materials to be 

combined with leather, again adding to the comfort of the shoe.  In the early 1900’s, 

when electricity allowed for leather laminated devices to be cut down much faster, these 
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arch supports became much easier to make and therefore more affordable for the general 

population. 

The next significant improvement in orthotics came with the introduction of a 

new generation of thermoplastics introduced in the 1960’s.  When heat is applied to 

thermoplastics they become pliable and can be molded to forms such as the foot.  Once 

cooled they hold their shape to create an exact replica.  Thermoplastic materials such as 

polypropylene provide for a strong, durable, thin and extremely lightweight orthotic that 

can support the body and the contours of the foot while fitting inside all different types 

and styles of shoes.   

The introduction of thermoplastic materials allowed for new theories to be 

developed on the making of arch supports using casts (or molds) of a patient’s foot 

instead of using the shoe last.  Foot supports are developed from the application of 

scientific principles applied to the foot’s structure and to foot orthotics.  These supports 

can be used to control the function of the feet, legs, hips, back and even neck.  Today, 

orthotic design has improved to the point that orthotics can be manufactured to help 

correct foot deformities and altered gaits that typically may cause pain from the feet all 

the way up to the neck. 

Different people use orthotics for many reasons.  Custom prescription foot 

orthoses are commonly accepted as an effective means of treating and preventing many 

lower extremity or back injuries and ailments.  Often times, orthotics are used as a 

precautionary measure to help prevent injuries in athletes.  For example, injuries are 

prevalent within the running community.  It is very common for runners to sustain 

injuries from the repetitive high impact movements exerted on the body and in 
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particular the lower extremity joints as well as several kinematic and kinetic factors 

during the activity.  Although the types and general causes of these injuries are relatively 

well known, there are still many unanswered questions related to the best way to deal 

with the prevention and recovery aspect of repeated impact injuries.   

 

2.3. Custom Foot Orthotics 

There has been very little conclusive research done pertaining to the 

biomechanical influence of custom foot orthotic intervention.  The majority of the 

clinical studies performed to date have resulted in conflicting results due to significant 

limitations that will be addressed in the subsequent research.   

 

Figure 2 Four layers of a semi-rigid style custom foot orthotic 

 (Drawing credit to: Kintec FootLabs) 

 

As mentioned above, Custom Foot Orthoses (CFOs) are often used as an 

acceptable method of managing injuries, and while they usually produce encouraging 

outcomes, it still remains unclear how the dynamics of the lower extremity are 

influenced by the device  (MacLean et al., 2006). Many previous clinical studies have 

been performed on the effects of CFO intervention, and many have focused specifically 



www.manaraa.com

 9 

 

on the effects during running.  These studies have focused on rear foot and tibial 

kinematics, and both lower extremity kinematics and kinetics (MacLean et al., 2006).  

Variability has been seen in study results due to two main reasons: 1) the types of 

subjects used; and 2) the design of the experiment (MacLean et al., 2006). 

Many research investigations have distributed identical designs to each subject 

in order to limit the confusing effects of the orthotic (Mundermann et al., 2003).  It has 

been argued that using the same orthotic design for all subjects could be just as or more 

of a puzzling factor, given that the resulting device may not be comfortable or suitable 

for each subject’s needs (MacLean et al., 2006).  CFOs are usually prescribed by 

podiatrists, physical therapists and sports medicine physicians (Root, 1994) and then 

manufactured from a volumetric impression of the foot by a certified laboratory to 

address the specific needs of the patient (MacLean et al., 2006).  CFO research has not 

always included subjects who would normally be candidates for the intervention; many 

studies have utilized healthy or injury-free subjects (MacLean et al., 2006). 

The main findings from CFO clinical studies have been: significant decrease in 

maximum rearfoot eversion angle (Bates et al., 1979; Smith et al., 1986; MacLean et al., 

2006), decrease in maximum rearfoot eversion velocity (Smith et al., 1986; MacLean et 

al., 2006), decrease in maximum internal ankle inversion moment (Mundermann et al., 

2003; Williams et al., 2003; MacLean et al., 2006), decrease in impact peak and 

maximum vertical loading rate (Mundermann et al., 2003), and decrease in maximum 

tibial internal rotation angle (Nawoczenski et al., 1995). 

Although these studies have shown results, these results have been considered 

somewhat ambiguous due to the questionable experiement designs mentioned above.  
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Therefore, the exact effects orthotics have on the kinematics of human locomotion 

remain unclear due to the fact that it is either extremely difficult, very time consuming 

or not possible to design a study that will incorporate the appropriate subjects and 

investigations.  This has limited researcher’s ability to draw strong conclusions 

regarding the design and effect of CFOs.  This is where modeling and analysis, in 

particular FEA, can assist in the progression and facilitation of this research.  Modeling 

allows for the ability to control subject variability, thereby minimizing some of the 

uncertainty found in the current literature. 

2.3.1. Engineering Modeling and Analysis 

Today’s competitive environment has placed a great importance on the ability to 

reduce the time, effort, prototypes, physical tests, repetitions and expense pertaining to 

the iterative process used in design of products.  Finite Element Analysis, or FEA, has 

proven to be an excellent tool for analyzing and testing products in a computational 

environment in order to shorten the time to market, lower development costs and 

improve product quality.  FEA is an engineering analysis method used to determine, 

among other things, the stresses, strains, structural integrity and fatigue life of many 

different types of components, structures and machinery.  FEA allows for designs to be 

developed with a high degree of insight and for the ability to perform significant 

amounts of virtual testing before committing to a particular design for prototyping.  

FEA is also often used to optimize mechanical designs, increase safety limits, reduce 

weight, control vibrations and extend life. 
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Engineering modeling an analysis allows for multiple advancements in the field 

of biomechanics that could not otherwise be achieved with strictly in vivo experimental 

work.  Therefore, this research considers engineering modeling and analysis modeling 

using FEA as appropriate complementary tools to the current research available to date 

on custom orthoses through clinical studies in kinesiology.  An FEA model can enhance 

our understanding of orthotics at a micro level, before considering the implications of 

how they interact with the human body.  In practice, clinicians believe that certain 

design modifications to an orthotic alter the behavior of the orthotic under certain loads.  

For example, it is know that the stiffness of the support under the medial longitudinal 

arch can change; however, to what extent is still unknown.  Such questions could be 

answered while avoiding physical tests and experiments using various designs with a 

valid FE computer model.   

Finite element models can be used to enhance the design process of 

manufacturing orthotics.  Presently, clinicians calculate the stiffness of the orthotic 

based on their experience using the patient’s characteristics (i.e. arch height, foot and 

body mechanics, weight and activity level) and the orthotic design (selected material: 

orthotic shell, top cover, posting material, alterations to the cast, and additions to the 

orthotic).  In the future, it seems possible to produce interactive software wherein the 

clinician can complement traditional clinical methods with FE models so as to produce 

orthotics that are optimal for each particular client.   
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2.4. Finite Element Related Work on Orthotics 

It has been publicized by many researchers that biomechanical factors play a 

crucial role in the study of orthotics (MacLean et al., 2006).  Little biomechanical data is 

available in the literature to assist in understanding how such factors can effectively be 

applied to the development of orthoses.  It is possible to simulate foot motions, change 

in material properties, different loading conditions, and different orthotic conditions 

using accurate FE models.  These models can be altered relatively easily, making it 

possible to further our understanding of the influence that the device has on 

biomechanical factors.   

Currently, the majority of FEAs on orthotics have focused on two types of 

orthotic inserts: Ankle-Foot Orthotics, or AFOs, and accommodative orthotics.  AFO 

research has focused on analyzing stress points found in the device when in use.  This 

research has allowed for optimal designs leading to the reduction of orthotic fracture 

and increase in patient compliance.  Research on accommodative orthotics has primarily 

focused on the reduction of peak plantar pressure in the hopes of preventing foot 

ulcerations.  Both will be addressed further in the following sections. 

2.4.1.  Ankle Foot Orthotic Finite Element Analysis Research 

AFOs are designed to help control the motion of the ankle while offering 

support to the foot.  They are often used to treat conditions such as drop-foot, posterior 

tibial tendon dysfunction, severe flatfoot, arthritis of the ankle and/or foot, ankle 

sprains, lateral ankle instability and tendonitis.   
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There are three major objectives for the design of an AFO.  The first is to 

control motion, correct deformity, and compensate for weakness, thereby restoring 

normal function and ability.  The second objective is to make the orthotic as 

comfortable to wear as possible in order to increase patient compliance.  The third 

objective is to minimize the abnormal appearance of the orthotic.  Most advanced AFOs 

have been unable to improve on all three objectives.  The goal of most early research 

was to either reduce the weight or bulkiness of the orthotic to increase patient 

compliance or strengthen the weak spots that tend to fail due to high stresses applied by 

the foot.   

Early studies using FEA on AFOs investigated the response of the ankle with 

and without orthotics (P.C. Lam et al., 1986) by analyzing peak stresses and 

deformation patterns.  Later studies used FEA to predict loads at which AFOs become 

unstable and analyze the stress distributions (D. Leone et al., 1991; T-M Chu et al., 

1991).  Due to lack of computational abilities, both of these studies were only able to 

model the orthotics using linear material properties.  More sophisticated models would 

have been necessary to report accurate numbers such as nonlinear material behavior and 

accurate geometry.  The most recent work on AFOs includes a study using FEA to 

suggest improvements on lowering the weight and improving the comfort of an orthotic 

by evaluating real time pressure between the subject and the orthotic during routine 

actions (walking, chair rise, stair climb, pivoting) via a resistive pad.  From the collected 

data, an accurate model of the orthotic was created and the stress caused by the above 

activities was evaluated, leading to modification suggestions to reduce orthotic weight 
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(Khamis S. Abu-Hasaballah et al, 1997).  There has not been any FEA research done on 

ankle-foot orthotics since then. 

 

2.4.2. Accommodative Orthotic Finite Element Analysis Research 

Accommodative orthotics are primarily used for the prevention of foot ulcers 

through the reduction of plantar pressure levels by redistributing the stresses between 

the foot and orthotic.  Foot ulcers are a serious problem for people suffering from 

diabetes as it can lead to foot amputation and ultimately death.  Neuropathy and 

vascular disease are complications associated with diabetes, and although both may be 

present, the pathology results in either sensory deficit (neuropathy) or vascular 

impairment (vascular disease).  Skin ulcerations are a result of chronic sensory 

neuropathy.    A protective threshold is when a person possesses adequate sensation to 

determine when his or her body is at risk of harm from an outside source.  At any point 

below this threshold, there is inadequate sensation to signal the brain to potential harm.  

When the protective threshold is lost, this allows repetitive, painless trauma to occur to 

soft tissues and skeletal structures which may further increase the sensory deficit.   

Friction, pressure and shearing are the three causes of stress of great concern for 

diabetics.  Friction is considered the surface resistance of one body sliding over another.  

Blisters are caused by fast and constant friction; the opposite causes calluses.  The 

vertical ground reaction forces applied to the foot is referred to as pressure.  Ischemia 

can be caused by constant pressure and can result in necrosis (tissue death).  Shearing is 

a combination of friction and pressure and can occur when two surfaces slide over each 

other, with pressure being applied perpendicular to the direction of movement.  This 
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force is often produced during normal gait.  These forces can cause potential injury to 

the bones and soft tissues (joint subluxation and skin ulceration).   

Orthotic therapy is intended to decrease Ground Reaction Forces (GRF) applied 

to the foot.  An exact mold of the foot is extracted and if localized areas of pressure 

occur, the GRF’s can be reduced by elevating adjacent areas, such as with metatarsal 

pads.  Distributing GRF’s over a greater time period will decrease shearing.  For 

example, soft materials will slow the foot by increasing the vertical distance the foot 

travels before coming to rest.  If the orthotic materials are rigid the poor shock 

absorption and non-accommodative properties will not be helpful for these patients.  

Corrective components of orthoses aim at decreasing unnecessary pressure on the foot 

by limiting excess motion and maintaining an unstable foot in proper alignment.   

Reduced plantar pressure levels to prevent foot ulcers can be achieved with in-

shoe orthoses.  They reduce the pressure at bony prominences, especially under the 

metatarsal heads.  Although this method is readily used, very little actual quantitative 

information is available regarding the effect of thickness and influence of soft tissue 

characteristics on the cushioning effect of these orthoses.  FEA has been used to analyze 

accommodative orthotics mostly in the late 1990’s and most recently in 2003.  

Nonlinear material properties are difficult to model and only with recent computing 

advancements has this become more common.  The first study used FEA to compare 

insoles of varying thicknesses by calculating peak plantar pressures and validating these 

models and values through clinical measurements (Lemmon et al., 1995).  Two years 

later this same group investigated alterations in pressure under the second metatarsal 

head as a function of insole thickness and foot tissue thickness.  The group found that 
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orthoses reduced plantar pressure and offered techniques which allowed for a better 

approach to understanding plantar cushioning as well as the principals involved in the 

design of therapeutic footwear(Lemmon et al., 1997).  Most recently in Chen et al.’s 

2003 research, FEA was used to study the effects of total contact insoles on plantar 

stress redistribution by analyzing different stress reduction and redistribution.  This 

research allowed for recommendations to be made on the effectiveness of 

accommodative orthotics.  There have been a couple of recent studies on the foot insole 

interaction, but these studies have primarily been emphasizing the finite element model 

of the foot as opposed to the orthotic.   

Currently nothing comparable exists in the literature regarding the application of 

FEA to the understanding and design of CFOs and, more specifically, semi-rigid style 

custom foot orthotics.  Traditionally, custom desiging orthotics has been a process 

primarily using empirical methods.  Very little actual quantitative information is 

available regarding the effectiveness of custom orthoses and little scientific evidence is 

available to provide guidelines for persons who prescribe insoles.  The challenge 

involved in the modeling and analysis of CFOs lie in the complicated geometry and 

muti-layering of nonlinear materials. 
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     CHAPTER 3 

 METHODS 

3.1. Research Plan 

A four step procedure was proposed to carry out the investigation of the 

engineering study of CFO.  Figure 3 shows a schematic representation of the various 

stages involved.  They include: 1) the estimation of the nonlinear material properties; 2) 

the generation of complex geometry in CFOs through laser scan and its subsequent 

conversion to a solid model representation format for further analysis; 3) a thorough 

FEA analysis using appropriate forces and boundary conditions and, 4) a mechanism for 

model validation through experimental studies, which will be done at a later time.  The 

following sections detail these steps. 
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Figure 3 Detailed schematic representation of proposed research tasks 

 

 

3.1.1. Nonlinear Material Property Estimation  

A challenge to executing an engineering analysis of CFOs is the lack of 

availability of material properties, which are, to begin with, highly complex and 

nonlinear.  To this end, in this research an experimental set-up and an advanced 

estimation technique were used to assess and calibrate the necessary engineering 
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material properties for the most commonly prescribed orthotic, the semi-rigid style 

orthotic.  The most popular materials used to make up a typical semi-rigid style orthotic 

are polypropylene, EVA foam, Spenco™, Topy, and McPuff.  During normal orthotic 

design, different thicknesses of polypropylene (support material) are used depending on 

the person’s weight, arch height and the amount of stiffness or flexibility required for 

support for that patient.  The polypropylene is heated up to its melting point in order to 

be formed to the foot mold.  Different material thicknesses are used within a range 

dictated not by scientific calculations but rather by the prescriber’s experience.  

Currently, there is not enough information in the literature on the material properties 

that make up these CFOs.  As a result, the first step required to create this FE model is 

to obtain material properties by running uniaxial tensile tests on samples of the 

materials to obtain their stress-strain behaviors.  Using the steps laid out in the 

“Development of material constants for nonlinear finite element analysis” by Robert H. 

Finney et al. (1987) and ASTM standard D575-91A, uniaxial tensile tests in the 

University of Massachusetts Amherst Materials Lab were performed.  The resulting 

stress strain values can be converted into Mooney-Rivlin material constants for material 

model definitions in ANSYS.  Figure 4 shows sample speciments used in uniaxial 

testing.  
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Figure 4 Some samples used in uniaxial tensile testing 

 

One of the challenges encountered in the creation of an FEA model of a semi-

rigid style custom foot orthotic (CFO) is estimating the complicated nonlinear material 

properties.  The estimation of material properties can be accomplished by performing 

uniaxial tensile tests on raw materials and converting the data using a Mooney-Rivlin 

strain energy function to input those values into ANSYS.  The more accurate a finite 

element model the more useful it will be.  Nonlinear materials require a little more 

detailed knowledge of material properties and characteristics.  Custom foot semi rigid 

style  orthotics are primarily comprised of layers of hard and soft nonlinear materials.  

The material primarily used for the support and therefore investigated in this project is 

polypropylene.  In future work the investigation of the other materials such as Spenco, 

EVA, and Topy, will be analyzed in their interaction with polypropylene. 
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3.1.1.1. Material Property Testing of Orthotic Material 

The sheets of raw material of polypropylene, 2mm (heated and unheated), 3mm 

(heated and unheated), and 4mm were supplied by Kintec footlabs, and the uniaxial 

tensile tests were performed in the University of Massachusetts Amherst Materials 

Laboratory.  The test specimens were cut to standard ASTM D 412 dogbone shape 3” 

long by .75” wide.  Five of each specimen were cut (total of 40) and the stress strain 

data were recorded from the Instron uniaxial tesile tester in the Materials Lab.  Before 

each sample was run, the width and thickness of each specimen was measured to the 

nearest 0.025mm (0.001”) and loaded into the Instron.  The data was exported into 

labview directly from the Instron machine.  The Stress strain data is presented below in 

figures 5a – 5h. 

P2H

Stress vs Strain

0

10

20

30

40

50

-0.02 0 0.02 0.04 0.06 0.08 0.1

Strain

S
tr

e
s
s
 (

M
p

a
)

 
Figure 5a Stress-strain curve for the averaged data set for the 2mm heated 

polypropylene material 
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Figure 5b Stress strain curve for the averaged data set for the 2mm raw 

polypropylene material 
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Figure 5c Stress strain curve for the averaged data set for the 3mm heated 

polypropylene material 
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Figure 5d Stress strain curve for the averaged data set for the 3mm raw 

polypropylene material 
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Figure 5e Stress strain curve for the averaged data set for the 4mm raw 

polypropylene material 
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Figure 5f Stress strain curve for the averaged data set for the Topy material 
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Figure 5g Stress strain curve for the averaged data set for the Spenco material 
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Figure 5h Stress strain curve for the averaged data set for the EVA foam material 

 

 

Findings for Mooney-Rivlin material constants according to Finney et al., 1987: 

 

According to Finney et al., the most commonly used formula in the analysis of 

elastomers is the Mooney-Rivlin strain energy function.  For uniaxial tension of an 

incompressible Mooney-Rivlin material, the stress strain equation is expressed by:  

S = 2*(a - a
-2

)*(C1 + C2*a
-1

) 

 

Where: S = Cauchy stress (ratio of force to the original area) 

a = Principal stretch ratio (1+dL/L) 
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Using this equation when (S/(2*(a – a
-2

))) is plotted against a
-1

, the resulting plot will be 

a straight line with C2 as the slope and (C1 + C2) as the intercept at a
-1

 = 1.  The tension 

force is converted to tensile stress S = T/Aoriginal  and the deformation (dL) to principal 

stretch ratio a = 1+dL/Loriginal.  The  equation (S/(2*(a – a
-2

))) is plotted against the 

inverse of the principal stretch ratio (a
-1

) and as is shown below in figures 6a – 6e the 

materials analyzed follow the Mooney-Rivlin model since it is in a straight line. 
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Figure 6a 2mm thick heated polypropylene Mooney-Rivlin test (S/(2*(a – a-2))) is 

plotted against a-1 validating the ability to use the Mooney-Rivlin strain energy 

function for the data 
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Figure 6b 2mm thick raw polypropylene Mooney-Rivlin test (S/(2*(a – a

-2
))) is 

plotted against a
-1

 validating the ability to use the Mooney-Rivlin strain energy 

function for the data 
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Figure 6c 3mm thick heated polypropylene Mooney-Rivlin test (S/(2*(a – a

-2
))) is 

plotted against a
-1

 validating the ability to use the Mooney-Rivlin strain energy 

function for the data 
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Figure 6d 3mm thick raw polypropylene Mooney-Rivlin test (S/(2*(a – a

-2
))) is 

plotted against a
-1 

validating the ability to use the Mooney-Rivlin strain energy 

function for the data 
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Figure 6e 4mm thick raw polypropylene Mooney-Rivlin test (S/(2*(a – a

-2
))) is 

plotted against a
-1

 validating the ability to use the Mooney-Rivlin strain energy 

function for the data 

 

 

Table 1 Mooney-Rivlin material constants estimated from function and stress 

strain data.  Poisson’s ratio of the materials are input through the d value by:        

d =  (1-2*υυυυ)/(C1 + C2) and the material constants are related to the initial shear 

modulus G by: G 

 
2mm Heated 

Polypropylene 
2mm 

Polypropylene 
3mm Heated 

Polypropylene 
3mm 

Polypropylene 
4mm 

Polypropylene 

 P2H P2NH P3H P3NH P4NH 

C1 (MPa) -3149.1 -3295.1 -22623 -5764.8 -7496 

C2 (MPa) 3484.6 3661.8 23743 6458.3 8298.9 

d (Mpa) 0.000596 0.000545 0.000179 0.000288 2.49E-04 

G (Mpa) 671 733.4 2240 1387 1605 

E (Mpa) 1342 1466.8 4480 2774 3210 

 

These material constants can be used to designate the appropriate material 

properties to each material in the finite element model created in ANSYS.  The material 

properties, along with the geometry accuracy, are essential for accurate representation 

and analyses within those representations.  Although different thicknesses of 

polypropylene were tested, only the results from the 3mm heated polypropylene was 

used to reduce the number of variables to start out with. 
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3.1.2. Generation of Complex Geometry 

This research recognizes that the replication using CAD tools can be difficult to 

almost impossible as well as extremely time consuming because of the complex 

geometry of a custom foot orthotic.  Alternatively, accurate geometry can be achieved 

by laser scanning the device.  Laser scanning is a process by which a surface is scanned 

or sampled by taking multiple scans from all angles in order to capture the object’s 

detail and geometry.  This results in a separate point cloud surface image.  Although this 

simplifies the process and allows for the most accurate geometry possible, the process of 

conversion to a usable format can be challenging.  For this research, a semi rigid style 

orthotic was scanned by a RealScan 3D model 200 laser digitizer (3D Digital Corp, 

Sandy Hook, CT) by Dr. Saunders Whittlesey.  This point cloud data was converted into 

a solid image and meshed using 3-Matic, a program by Materialise, Inc that allows one 

to reconstruct and manipulate scanned data directly and exported into ANSYS using the 

steps outlined in the appendix.  These conversion of files were made possible by the 

very helpful software engineers at Materialise, Inc.  The program 3-Matic meshed the 

model by default with surface element type Shell93.  These elements were then 

converted to 3D 20 Noded tetrahedral elements SOLID186.  These elements were used 

because SOLID186 is a newer version of SOLID95 which means that it tolerates 

irregular shapes without very much loss of accuracy and it is  well suited  to model 

curved boundaries. These elements can also be tetrahedral and can automatically 

transition between hexahedral and tetrahedral using pyramids.  It has capabilities for 

simulating deformations of nearly incompressible elastoplastic materials and fully 
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incompressible hyperelastic materials which matches well with simulating 

polypropylene and many of the other materials that will be modeled in the future.   

 
Figure 7 A representative solid model of the scanned orthotic with the areas from 

ANSYS 

 
Figure 8 Meshed orthotic representative plot from ANSYS  
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3.2. Model Development 

Utilizing the nonlinear material properties obtained from the material testing 

described above and the geometry from the laser scanned and converted model, an 

accurate FEA ANSYS model for the study of force induced deflection in CFOs was 

developed.  Mathematical extrapolation techniques were used to convert the nonlinear 

material properties from the lab experiments for the inputs into describing the material 

properties.  Once the orthotic was scanned, the file was converted to *.stl format and 

imported into 3-Matic.  3-Matic then outputs an ANSYS input file of the solid model.  

The next step after this was to run some in lab clinical trials using the biomechanics lab 

at the University of Massachusetts Amherst mimicing the loading and constraint 

conditions used in the FE Model to validate the simulation results. 

3.2.1. Preliminary Work: Pilot Study 

Custom foot orthoses are vital to the prevention and treatment of many lower 

extremity ailments but are only effective if they are designed accurately.  The 

effectiveness of the orthotic design can be enhanced with the assistance of the results 

acquired by finite element models.  Two studies were performed with two different 

simplified objectives by creating and analyzing two sets of models.  The first set was 

created with simplified geometry and the second with simplified material properties.   

3.2.1.1.Pilot Study: Study 1 

In a first study, an FEA model of a CFO with a simplified geometry was 

constructed with 4 layers of nonlinear materials.  A “heel strike” was simulated on the 
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back outer edge of the model by applying a point load; the deflection and von Mises 

stresses were analyzed.  The purpose of the first study was to analyze the layering of 

nonlinear material properties modeled in ANSYS.   

A very simple geometry representing the area of an orthotic from the heel to the 

arch (midline) was drawn in ANSYS as an “Area”.  The surface of the area was then 

extruded down into a volume, one layer at a time.  This volume can be seen in Figure 7 

below.  Each layer was designated as a nonlinear different material corresponding to the 

four nonlinear materials in a CFO (Polypropylene, EVA foam, Nylon, and vinyl).  Heel 

strike was simulated by applying a point load to the back of the orthotic representing 

1.5* the weight of a 200lb person.  A point load was used to simplify the results even 

though a point load does not accurately replicate heel strike; it was used to simplify the 

analysis.   

 

 

Figure 9 FEA model of simplified geometry orthotic: Full model, and meshed back 

half of model 

 

Due to the inaccuracies of the nonlinear material property estimation, the strain 

energy function selection and the application of the point load convergence could not be 
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reached in this model.  Layering of nonlinear properties is extremely complicated and as 

much accuracy as possible is necessary in order for the analyses to converge properly.  

These results lead to the investigation of accurate material properties and function to use 

to model these materials properly.  The necessity of performing experimental work in 

order to acquire these numbers became apparent.  The research task will be to look in 

the literature for methods for extracting material properties from experimental studies.  

This work is not trivial and studies have shown that the use of mathematical 

extrapolation techniques appear to yield sufficiently accurate results.  

3.2.1.2.    Pilot Study: Study 2 

In the second study the materials were completely simplified by creating one 

layer of the orthotic (the polypropylene, support layer), modeled as a material with 

linear properties.  Five models with two variables were created.   These analyses were 

accomplished by analyzing the load applied to the outer side of the rear orthotic 

simulating the heel strike part of the gait cycle using FEA.  The 5 models were 

compared and analyzed using variance of the Ground Reaction Forces (GRFs) to 

represent stability of the orthotic.  The purpose of the second study was to understand 

the effects of the geometry on the custom foot orthotic and how it affects stability. 

Five models were created with two variables.  Variable 1 was the wall height 

and variable 2 was the arch height.  The models ranged from “high wall with an arch” to 

“no wall with no arch”.  As seen in the two figures below, Variable 1 is the wall height 

and Variable 2 is the Arch height. 
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Figure 10 Model of simplified material property orthotic (a) variable 1, wall 

height, (b) variable 2, arch height 

 

A surface pressure load was applied to the back outer edge of the model to 

simulate heel strike of the gait cycle.  When analyzing the reaction forces, the lower 

variances would signify more stability.   

From the analysis results of this study, it is clear that geometry is a necessary 

detail and does significantly affect analysis results.  The model with “no arch with no 

wall” had very different results from the model with “an arch and a high wall”.  The 

material reaction to the load applied was also not accurately modeled due to the 

simplification by classifying the materials as linear.  The models with “no wall” saw 

much more deformity than the models with the “medium wall” and “high wall”.  The 

arch also affected the stability when the force was applied to the back of the model by 

showing a much larger variance than the models with “no arch”. 

Drawing completely accurate geometry is extremely difficult and time 

consuming to get all of the intricacies of an orthotic design.  This will be alleviated by 
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acquiring the exact geometry through other technologically advanced means such as 

laser scanning.  This allows for all the details of the complicated three dimensional 

geometrical surface to be captured for accurate modeling. 

Accurate geometry coupled with an accurate nonlinear material properties and 

material model function will allow for not only convergence of the model, but accurate 

results as well.   

3.3. Plan of Work 

The intent of this research is to build on the two studies discussed above, focusing 

on two main areas of improvement in order to proceed with an accurate FE model, 

nonlinear material property estimation and complex geometry replication.  These 

models can replace the use of  empirical tables for designing custom foot orthotics and 

enable the optimal design thicknesses based on end-users’ weight and activities. 

Similarly, they will facilitate the minimization of effort in the simulation of various 

orthotic and loading conditions, changes in material properties, and foot deformities by 

simply altering model specifications.  Finally, these models and the corresponding 

results can also form the basis for subsequent design of a new generation of custom foot 

orthotics.   

The first area of improvement is to design an experimental procedure for the 

estimation of accurate and specific nonlinear material properties from the materials 

which make up the CFO.  Performing uniaxial tensile tests on each material yielded 

stress strain behavior needed to input precise values resulting in accurate nonlinear 

model of a custom foot orthotic.  The second area is to generate accurate and specific 
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geometry of a CFO through laser scaning and conversion techniques.  Specifically, an 

exact geometry of a CFO will be generated by using a laser scanning device to capture 

the exact surface geometry and then using the 3-Matics program to convert the image to 

a solid in a format consistent with CAD representations.  The details of this plan of 

work are shown in Figure 6 below.   

3.3.1. Timeline Of Work 

 

Figure 11 Schematic of detailed plan of work 
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CHAPTER 4 

 RESULTS & DISCUSSION 

4.1. Results 

The objective of this work is to create different models of differing thickness and 

apply various load conditions to analyze  and compare to current thickness to weight 

classification guidelines.  These models will minimize the effort in analyzing various 

orthotic and loading conditions, changes in material properties, and foot deformities 

allowing for quick insight into the effect of change to an orthotic without having to 

build physical models first.  This will also allow us to validate and draw more precise 

guiding principle to  prescribers prescription guidelines in reference to the weight to 

thickness ratio as well as give an alternative reference which can replace the old 

reference tables.  Such as the weight window for each polypropylene thickness and 

specific material selection. The intent is to have these models and the corresponding 

results form the basis for subsequent design of a new generation of custom foot 

orthotics. 

4.1.1. Prescribers’ Guidelines:Weight-to-Thickness Ratio 

The choice of material in the construction of the orthotic is dictated by the amount 

of control necessary for each patient.  The more rigid the material, the more control will 

be had by the joints of the foot.  The choice is decided by the thickness, then density of 

the material to be used for the shell and post, as well as the weight and activity level of 

the patient.  The thickness of the material will influence its function, and therefore a 
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compromise is drawn between optimum flexibility for weight and maximum 

control/support.  There are different thickness polypropylene materials used depending 

on the size of the patient and the activity level of that patient.  The different thicknesses 

explored were 2mm, 3mm, 4mm and 5mm.  If pure thickness is used to determine the 

shell to be prescribed by the patients weight;  the 2mm thick polypropylene is normally 

not prescribed on its own, it is normally used for reinforcement of other materials; the 

3mm thickness is generally used for a medium sized person in the weight range of less 

than 45 kg (~100 lbs) but more than 25 kg (~ 55 lbs) and the 4mm thickness for a 

slightly larger person in the weight range of more than 45 kg, but les than 75 kg 

(~165lbs).  There is also a 5mm thick shell used for people who weigh more than 75 kg. 

 Currently, pedorthists use a table of guidelines such as the one below in Figure 

12 to direct them as to the level of support to choose for each client based on the client’s 

weight and activity level.  These guidelines are made based on past experiences, as 

opposed to scientific methods, and this engineering analysis will give us some insight 

into whether these guidelines are appropriate or not.  These models will also give the 

prescriber a better tool to follow.  The middle column (Category 2) of Figure 12 below 

lays out the guidelines for the thickness that should be matched with the person’s weight 

for semi-flexible material.   
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Figure 12 Sample weight to thickness ratio guideline for orthotics prescribers 

4.1.2.  Problem Statement 

The foot can be subjected to various loading conditions, but in this study we will 

only consider normal walking in the mid-stance phase as in W.P. Chen et al. (2003) and 

normal running mid-stance phase.  The mid-stance phase of gait was analyzed for this 

project to remain consistent with the literature as well as for the simple fact that it 

seemed like the logical place to start the analyses.  Other phases of gait such as heel 

strike and possible toe off will be analyzed in future research.  The kinematic constraints 

for the CFOs under a mid-stance loading scenario were applied as follows: 1) no 

movement in the back bottom heel area; 2) no horizontal movement on the back and 

lateral edges, leaving the arch and toe free; and 3) no movement in the vertical direction 
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on the bottom leaving the arch free; and 4) the arch area is free to move in any direction. 

Finally, a uniform surface pressure load is applied using a static large deformation to the 

entire top surface.   

These constraints were chosen to simulate an orthotic in a shoe during either 

walking or running at the mid stance phase.  So the orthotic will have a support under 

the bottom side of the orthotic, but since the arch is off of the “support” there is room 

for that orthotic to flatten out as weight is applied to it, which is the reason for leaving 

the arch area open and unconstrained to deform in any direction.  Then since the orthotic 

is in a shoe, the back side of the orthotic cannot move in any direction, but as the 

orthotic flattens out the front part of the orthotic may move forward or the arch may 

deflect slightly in the lateral direction in addition to the downward direction.  That is 

why there is no constraints on the sides of the arch either.  Finally the back outer rim 

and front medial rim is constrained in the lateral direction so that no sliding/twisting can 

occur, just as would be in a shoe.  These constrains are displayed pictorially in Figures 

13(a) – 13(d) below. 

 
Figure 13a Graphic of applied surface pressure on FE meshed model 
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Figure 13b Graphic of constraint on bottom area; zero movement in z-direction 

(vertical direction) 

 

 

 
Figure 13c Graphic of applied constraint in heel area; zero movement in all DOF 
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Figure 13d Graphic of applied constraint on lateral and medial edges; zero 

movement in y-direction (horizontal direction) 

   

The force applied was a static nonlinear step load simulating various weight 

classifications for walking and running.  The results of the different force applied and 

the resulting maximum Von Mises stress and deflection are listed in Table 2 below. 

 

 

Table 2 Results of orthotic thickness vs maximum Von Mises stress and maximum 

deflection.  These results correspond to the FEA model results (each thickness is a 

new model and each weight is a new condition) 

Orthotic 
Thickness 
(mm) 

Weight           
(Kg (lbs)) 

Equivalent 
Pressure 
(Mpa) 

Max 
stress 
(Mpa) 

Deflection 
(mm) 

2 45 (100) 0.18 38.78 1.31 

2 102 (225) 0.4 101.04 3.62 

2 140 (310*) 1.09872   

3 45 (100) 0.18 21.57 0.6 

3 102 (225) 0.4 45.87 1.4 

3 140 (310*) 1.09872 141.62 4.59 

4 45 (100) 0.18 13.96 0.35 

4 102 (225) 0.4 30.07 0.78 

4 140 (310*) 1.09872 73.4 2.27 

5 45 (100) 0.18 10.12 0.22 

5 102 (225) 0.4 21.87 0.49 

5 140 (310*) 1.09872 53.96 1.38 
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An example of how the weight classifications translate into force applications to the 

orthotic is:140 kg (~300lbs) is 1373.4 Newtons, which is applied as a 0.55 MPa 

pressure force for walking and 1.09872 MPa for running. 
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Figure 14 Results of the maximum deflection versus the applied load by orthotic 

thickness 

 

Figure 14  above show the results of the maximum deflection versus the applied 

load by orthotic thickness.  In this figure the three weight classes used were 45kg, 100kg 

and 140kg, which translated to an applied pressure load of 0.18, 0.40, and 110 MPa 

respectively.  In the figure it is evident that the lager the applied load, the more 

deflection is seen in the arch as would be expected.  The 2mm deflection line is 

representative of approximately 10% deflection from original arch height.  Each line 

represents a different model which only varies by thickness.  The orange line on the 

bottom represents the 5mm thick model, the green line right above that represents the 
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4mm thick model, the pink line above that represents the 3mm model and the top blue 

line represents the 2mm thick model.  Also as expected the thicker the orthotic the less 

deflection is experienced in the arch.  The applied load can also be separated into three 

distinct regions when from 0 to 0.25 MPa (the far left of the graph) is the load range 

corresponding to a person standing, the middle area from about 0.25 – 0.5 MPa is 

representative of a person walking and finally the far right form about 0.5 MPa and up is 

representative of a more rigourous activity such as running or carrying a heavy weight. 

 As stated earlier, typically a 2mm thick orthotic is never prescribed on its own, 

but typically as a reinforcement to another material and the model represents this by 

showing that this model could not withstand any loads higher than about 0.5 MPa.  

Then there is some load by thickness interaction seen in particular between the 3mm 

and the 4mm thick model.  There is a small difference between the two down in the 

standing load range, but as we get in to the running load range (heavier applied loads), 

the difference between the two is very different (10% deflection versus 20% deflection).  

These differences are important to know in the design phase.  This is explained in a 

more technical sense by the beam theory described below.  Finally at the bottom of the 

graph there is not much difference between the 4mm and 5mm thick models even out in 

the running phase.   

 Preliminary clinical trial were run to gage whether the model results were within 

an appropriate range.  These preliminary trials were run in the Biomechanics Lab of the 

Kinesiology Department at the University of Massachusetts Amherst.  Eight high 

resolution Qualisys motion capture cameras were set up around a force platform in the 

center of the room.  The Orthotic was placed in the center of the cameras on the force 
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platform and one reflective marker was placed on the highest point on the arch.  Two 

separate trials were run, one non-weight bearing before each weight bearing trial to get a 

baseline measurement of the arch height.  Each weight bearing trial was run with a 70kg 

person standing on the orthotic.  These trials were run to examine the change in arch 

height when body weight is applied to the orthotic.  The FE model deflection ranges fall 

in line with the numbers from the preliminary clinical results.  The model and clinical 

preliminary trials differ slightly by about 7% – 10% due to two main factors.  First, 

there is some error in the clinical trails and further trials will allow for more accurate 

numbers.  Secondly, the actual FE model is slightly different than the actual geometry of 

the physical orthotic.  In the model the polypropylene layer extends all the way out to 

the toe region making the material appear slightly stiffer; whereas the actual physical 

model support phase (polypropylene layer) only extends to just past the arch as seen in 

Figure 15 below.   

(a)       (b) 

 
Figure 15 (a) Picture of physical orthotic used for clinical preliminary clinical 

trials, (b) FEA model used for analysis 
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Further biomechanics lab clinical trials will be run to validate the model.  Figure 16 

below shows the results of the deflection versus the applied load including the two data 

points from the preliminary clinical trials.   
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Figure 16 Results of the maximum deflection versus the applied load by orthotic 

thickness including preliminary clinical trial results 

 

Figure 17 below shows the maximum stress  versus the applied load by orthotic 

thickness and Figure 18 shows the stress distribution and deflection distributions of the 

finite element model results.  As one can see in the figures above, as the applied force 

increases, the resulting stresses also increase.  For each model the maximum stress 

increases as the applied load increases.  This is in line with the expected results because 

the thinner orthotic will have more deflection and will act as more of a shock absorber 

(absorbing more of the stress), while the thicker orthotic will be stiffer and more 

supportive, but will deflect less and therefore absorb less of the shock.   

Biomechanics Lab 

deflection = 

3.62mm, 3mm 

(3mm) 
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Figure 17 The maximum stress versus the applied load by orthotic thickness 

 

In the stress and deflection distribution result plots below show that the 

maximum stress areas are right around the edge of the arch and the inside rim of the 

arch as would be expected.  This is important for prescribers to know, since the arch is 

the area expected to perform.  This can also be important when taking into account the 

long term effects that the high stress areas will cause on the longevity of the orthotic.   
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(a)       (b) 

 
(c) 

 
Figure 18 (a) Stress distribution top view, (b) stress distribution bottom view, and 

(c) deflection distribution top view 

 

 

4.1.3. Beam Theory 

Beam theory is studied to verify the numerical analysis results.  The cross 

section of the beam is rectangular with the width of the beam, b (the dimension parallel 

to the bending axis), and the height of the beam, h (the dimension perpendicular to the 

bending axis).  A beam’s moment of Inertia (I) is a measure of its stiffness with respect 

to its cross section and its ability to resist bending.  Moment of Inertia (of axis 

perpendicular to load) is a significant variable in the determination of beam deflection: 

as I increases, bending decreases where I = bh
3
 / 12.  The deflection (vertical 
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displacement as a result of an applied load) of the simply supported beam is defined by  

∆ = PL
3
 /48EI and the maximum stress σmax = Mc/I (= bh

2
/6). 

The arch of an orthotic can be looked at as a simply supported beam and 

modeled as a structure that carries a load between its two supported ends.  Here,  the 

thickness of the orthotic will correspond to the height of the beam’s cross section, h.  

Therefore, as the thickness increases, the moment of inertia will increase, and the 

corresponding bending deflection will decrease.   Similarly, the maximum stress will 

decrease as the thickness increases.  This is evident in the results of the model: as the 

orthotic thickness increases, the deflection and stress decrease at a proportional rate.   

This can be seen in Figures 19(a) and 19(b) below. 
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Figure 19a Maximum deflection by orthotic thickness cubed as a function of 

applied load 
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Figure 19b Maximum Stress by orthotic thickness squared as a function of applied 

load 

 

In Figures 19a-19b, the trends are consistent with the beam theory as stated above.  

There is a slight deviation from the straight line at the large load/small thickness area 

because it seems the material deforms beyond its elastic zone and both the deflection 

and stress differ slightly from the trend. 

4.1.4. Early Complications 

 There were four early complications in this research: conversion of the scanned 

data; altering of the geometry; material property estimation; and constraints.  The first 

issue was converting the scan data to a usable format.  Although scanning the image 

greatly simplifies the ability to have an accurate geometry, the process of converting the 

scan data to a usable form by ANSYS can be challenging without the proper tools.  

Many processes were attempted before finding the 3-Matic program to convert the data.  

A custom Matlab program was written to create triangular facets, and then brought into 

ProE to make a solid model and then export as a *.iges file for import into ANSYS.  
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Unfortunately the IGES file exported from ProE was not readable by ANSYS.  Next an 

attempt was made to import it into and then out of ANSYS Workbench.  Workbench 

was unable to mesh the file in order to complete the conversion to ANSYS Classic.  

Finally, the 3-Matic program by Materialise, Inc was discovered and the file was able to 

be converted using the process laid out in the appendix.  Once the file was brought into 

ANSYS, however,  the geometry was not able to be altered since the file was meshed in 

3-Matic using the data points leaving no areas or volumes, only nodes and elements.  

Finally, the model was brought back into 3-Matic and a file was created with defined 

areas to use in ANSYS.     

The second main issue had to do with the material property estimation.  After 

getting the stress strain data from the materials testing, the conversion formula was 

published incorrectly in the Finney et al., paper being used.  The paper stated that if 

(S/2)*(a-a
-2

) is plotted against a
-1

, the resulting plot will be a straight line with c2 as the 

slope and (c1+c2) as the intercept at a
-1

 = 1.  Whereas the actual equation being plotted 

against a
-1

 is (S/(2*(a-a
-2

)).  This resulted in the values being off and the material 

property definitions being innacuarate, causing the model to behave erroneously.  At 

this early stage, our research did not find any other publications which had used 

Mooney-Rivlin to define their nonlinear material properties so a comparison in numbers 

to some standard values was not possible. 

Finally, the constraints that were initially defined were constraining the outer rim of 

the orthotic in lateral direction including the arch area.  Since that constraint did not 

allow the model to deflect in the lateral direction,  the polypropylene deflection results 

suggested that the polypropylene material was stiffer than it actually was.  After 
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conferring with experts in the field and removing the lateral constraints on the arch 

section, the model responded very well.  The results were much more accurate and 

compared favorably to the preliminary in lab trials that were run in the Biomechanics 

Lab.   

In the future another alteration would include cutting the top (toes) portion of the 

polypropylene layer down in the way that the real CFO’s are made, so as to cut down on 

the inaccurate stiffness further. 
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CHAPTER 5 

 SUMMATION & FUTURE WORK 

5.1. Summary  

In summary,  the aim of this research was to make a significant contribution in 

the understanding and development of CFOs by creating an accurate finite element 

model of a CFO using FEA.  Complicated nonlinear material property estimations were 

attained through experimental material testing and data conversion.  Complex geometry 

was attained through the use of laser scanning techniques and this coupled with the 

nonlinear material property estimations, yielded an accurate FEA model of a CFO.  The 

current model is performing as expected showing that as the load increases, the more the 

arch deflects, as well as that the thicker the orthotic is, the less the arch deflects.  The 

maximum stress areas are seen in the inner and outer edge of the arch region, and both 

the deflection and stress distributions are as expected.   

Creating this model allows for the ability to increase the knowledge and 

understanding of the effects CFOs have on human movement and performance.  The 

creation of an accurate FEA model will eventually allow for the simulation of various 

orthotic and loading conditions, changes in material properties, and foot deformities by 

simply altering model specifications.  These FEA CFO models can form a basis for 

subsequent design of a new generation of CFOs which may lead us to believe that 

patient compliance to certain designs and desired biomechanical outcome would 

improve.  These models may also be of interest to prescribers of orthotics in the 
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treatment of foot, leg, joint, hip and back problems to complement current clinical 

practices. 

5.2. Future work 

 Suggested future work topics can include: 1) Alteration of the geometry by 

further cutting the polypropylene layer down to the more accurate length; 2) a full 

clinical trial run to validate the model; 3) other polypropylene material properties 

compared by applying the 2mm and 4mm Mooney-Rivlin material model to the 

appropriate thicknesses; 4) other material layers added to the models, in particular the 

soft Spenco material added to the top of the polypropylene and the heel post materials 

(EVA and Topy rubber); 5) a comparison between the heated and raw materials 

analyzed; and, finally, 6) different phases of gait will be analyzed such as heel strike and 

possibly toe off.  As can be seen, there is much work to be done in the field and this 

model lays the foundation for those studies to be undertaken.  In the future it seems 

possible to produce interactive programs where a clinician can complement traditional 

methods with finite element models so as to produce orthotics that are optimal for each 

particular client. 
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APPENDIX 

STEPS FOR CONVERTING THE SCAN DATA TO A SOLID MODEL 

1. Import the scan data 

2. Isolate the points of interest (Point Cloud tab > Use the different tools and views 

to select and delete garbage points) 

3. Once you have the points you need, you can mesh them (Point Cloud tab 

>"Mesh Range Data") 

4. this works best when all points should be directly connected to their adjacent 

points;  

5. a hole filling strength of 5 was used where more is more agressive filling 

6. You will now have an STL mesh of your geometry,  

7. It may be rough, so it will need to be smoothed 

8. Smooth the surface (Mesh tab > Smooth) 

9. you can play with the smoothing parameter,  

10. A strength of 0.7 to 0.9 was used 

11. If some excess fringe data has been captured (i.e. the STL mesh extends slightly 

beyond where you intend it to), go to Marking tab > Mark Edge and use this to 

highlight all the triangles on the fringe.   

12. If necessary you can use the Expand Marked button to select another "ring" of 

triangles if your fringe is that large.   

13. Then just hit "delete" on your keyboard. 

14. Now we need to smooth the contour that remains.  Curve tab > Smooth curve.  

Select the bad contour that defines our surface.   

15. Only 3 iterations were done, more than 4 or 5 is not recommended.   

16. You may need to use this tool more than once to get a decent smoothing, though 

over-using it eventually starts to degrade the curve. 

17. Look at the edges of the surface now; we want it to be clean and smooth so that 

the offset function doesn't create artifacts.   

18. If you need to, you can mark and delete triangles, and also create triangles (Mesh 

tab > Create Triangle then click on 3 points) 
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19. Once the surface is ready to be offset, go to CAD tab > Offset surface.   

20. Select your distance and direction  

21. remember internal equals in the direction of the red faces 

22. You may need to clean up the result of the offset as we did in step 8.   

23. To fill holes use CAD tab > Fill Hole Normal 

24. Once the geometry is clean, we can remesh.  Remeshing tab > Create Inspection 

scene. 

25. On the inspection scene, choose what shape measurement you want  

26. The H/B normalized shape was used in this project 

27. Make sure the histogram is showing the shape measurement. 

28. Now use the Automatic Remesh function;  

29. It is suggest to raise the quality threshold by 0.1 each time  

30. it is not necessary to go higher than 0.3 unless you have a very specific reason. 

31. Once the remeshing is done  

32. Remeshing of specific difficult areas was done by marking the area and then 

doing a local remesh of "Marked Only" 

33. "Quality Preserving Triangle Reduction" can be done so that you don't have too 

many surface elements. 

34. Last step was to export to ANSYS 
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